Heteroduplex joint formation in Escherichia coli recombination is initiated by pairing of a 3'-ending strand.

نویسندگان

  • R Friedman-Ohana
  • A Cohen
چکیده

The formation of heteroduplex joints in Escherichia coli recombination is initiated by invasion of double-stranded DNA by a single-stranded homologue. To determine the polarity of the invasive strand, linear molecules with direct terminal repeats were released by in vivo restriction of infecting chimeric phage DNA and heteroduplex products of intramolecular recombination were analyzed. With this substrate, the invasive strand is expected to be incorporated into the circular crossover product and the complementary strand is expected to be incorporated into the reciprocal linear product. Strands of both polarities were incorporated into heteroduplex structures, but only strands ending 3' at the break were incorporated into circular products. This result indicates that invasion of the 3'-ending strand initiates the heteroduplex joint formation and that the complementary 5'-ending strand is incorporated into heteroduplex structures in the process of reciprocal strand exchange. The polarity of the invasive strand was not affected by recD, recJ, or xonA mutations. However, xonA and recJ mutations increased the proportion of heteroduplexes containing 5'-ending strands. This observation suggests that RecJ exonuclease and exonuclease I may enhance recombination by degrading the displaced strands during branch migration and thereby causing strand exchange to be unidirectional.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A RecG-independent nonconservative branch migration mechanism in Escherichia coli recombination.

To gain insight regarding the mechanisms that extend heteroduplex joints in Escherichia coli recombination, we investigated the effect of recG and ruv genotypes on heteroduplex strand polarity in intramolecular recombination products. We also examined the cumulative effect of mutational inactivation of RecG and single-strand-specific exonucleases on recombination proficiency and the role of Chi...

متن کامل

Heteroduplex strand-specificity in restriction-stimulated recombination by the RecE pathway of Escherichia coli.

The RecE recombination pathway is active in Escherichia coli recB recC sbcA mutants. To isolate and characterize products and intermediates of RecE-mediated, break-induced, intramolecular recombination, we infected recB recC sbcA mutants, expressing EcoRI endonuclease, with chimeric lambda phages that allow EcoRI-mediated release of cloned linear recombination substrates. Substrates with direct...

متن کامل

Physical Analyses of E. coli Heteroduplex Recombination Products In Vivo: On the Prevalence of 5′ and 3′ Patches

BACKGROUND Homologous recombination in Escherichia coli creates patches (non-crossovers) or splices (half crossovers), each of which may have associated heteroduplex DNA. Heteroduplex patches have recombinant DNA in one strand of the duplex, with parental flanking markers. Which DNA strand is exchanged in heteroduplex patches reflects the molecular mechanism of recombination. Several models for...

متن کامل

Saccharomyces cerevisiae Mer3 Helicase Stimulates 3′–5′ Heteroduplex Extension by Rad51 Implications for Crossover Control in Meiotic Recombination

Crossover and noncrossover recombinants can form by two different pathways during meiotic recombination in Saccharomyces cerevisiae. The MER3 gene is known to affect selectively crossover, but not noncrossover, recombination. The Mer3 protein is a DNA helicase that unwinds duplex DNA in the 3' to 5' direction. To define the underlying molecular steps of meiotic recombination, we investigated th...

متن کامل

Recombinational branch migration by the RadA/Sms paralog of RecA in Escherichia coli

RadA (also known as 'Sms') is a highly conserved protein, found in almost all eubacteria and plants, with sequence similarity to the RecA strand exchange protein and a role in homologous recombination. We investigate here the biochemical properties of the E. coli RadA protein and several mutant forms. RadA is a DNA-dependent ATPase, a DNA-binding protein and can stimulate the branch migration p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 95 12  شماره 

صفحات  -

تاریخ انتشار 1998